Consequences of Ultra-Violet Irradiation on the Mechanical Properties of Spider Silk
نویسندگان
چکیده
The outstanding combination of high tensile strength and extensibility of spider silk is believed to contribute to the material's toughness. Thus, there is great interest in engineering silk for biomedical products such as suture or implants. Additionally, over the years, many studies have also sought to enhance the mechanical properties of spider silk for wider applicability, e.g., by irradiating the material using ultra-violet radiation. However, the limitations surrounding the use of ultra-violet radiation for enhancing the mechanical properties of spider silk are not well-understood. Here, we have analyzed the mechanical properties of spider silk at short ultra-violet irradiation duration. Specimens of spider silk were subjected to ultra-violet irradiation (254-nm wavelength, i.e. UVC) for 10, 20, and 30 min, respectively, followed by tensile test to rupture to determine the strength (maximum stress), extensibility (rupture strain), and toughness (strain energy density to rupture). Controls, i.e., specimens that did not received UVC, were also subjected to tensile test to rupture to determine the respective mechanical properties. One-way analysis of variance reveals that these properties decrease significantly (p < 0.05) with increasing irradiation duration. Among the three mechanical parameters, the strength of the spider silk degrades most rapidly; the extensibility of the spider silk degrades the slowest. Overall, these changes correspond to the observed surface modifications as well as the bond rupture between the peptide chains of the treated silk. Altogether, this simple but comprehensive study provides some key insights into the dependence of the mechanical properties on ultra-violet irradiation duration.
منابع مشابه
Evaluation of Antimicrobial Activity of Spider Silk Pholcus Phalangioides Against Two Bacterial Pathogens in Food Borne
Objective: Due to the alarming increase the incidence and prevalence of infectious diseases and increasing bacterial resistance to antibiotics need to discover new strong antimicrobial compounds is feeling.Methods: In this study, the antimicrobial properties of spider silk Pholcus phalangioides produced in sterile conditions against two bacteria, Listeria monocytogenes and <em...
متن کاملEvaluation of Antimicrobial Activity of Spider Silk Pholcus Phalangioides Against Two Bacterial Pathogens in Food Borne
Objective: Due to the alarming increase the incidence and prevalence of infectious diseases and increasing bacterial resistance to antibiotics need to discover new strong antimicrobial compounds is feeling.Methods: In this study, the antimicrobial properties of spider silk Pholcus phalangioides produced in sterile conditions against two bacteria, Listeria monocytogenes and <em...
متن کاملUnexpected behavior of irradiated spider silk links conformational freedom to mechanical performance.
Silk fibers from Argiope trifasciata and Nephila inaurata orb-web weaving spiders were UV irradiated to modify the molecular weight of the constituent proteins. Fibers were characterized either as forcibly silked or after being subjected to maximum supercontraction. The effect of irradiation on supercontraction was also studied, both in terms of the percentage of supercontraction and the tensil...
متن کاملDesign of superior spider silk: from nanostructure to mechanical properties.
Spider dragline silk is of practical interest because of its excellent mechanical properties. However, the structure of this material is still largely unknown. In this article, we report what we believe is a new model of the hierarchical structure of silk based on scanning electron microscope and atomic force microscope images. This hierarchical structure includes beta-sheet, polypeptide chain ...
متن کاملSilkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.
The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric...
متن کامل